
5) _DISCPLE
)ISC- MANAGER
A SUITE OF INTERACTIVE PROGRAMS
TO MAKE THE MOST OF YOUR DISGPLE

GET TOTAL CONTROL OF YOUR DISCS

COMPRISES PROGRAMS
ror ling and

organising capabilities that would
cost £100's on other machines!

@ THE CONFIGURER Tris prooren
actually names andnumbers DISOPLE discs
to your requirements. Now dsc identification is
smplicty

@ THE CATALOGUER An amazing program that allow logue, search,
uy every program on every disc... NO typing in, simply inset al your
discs, one at a time into drive 1 and the Cataloguer Sorts, colates and displays al programs
into numerical order, automatically!

so simple, so easy and such
onder how you could ever have Managed without! ged

OnLy
AVAILABLE

FROM

‘Diand give detais of crive
BETTERBYTES, 10 SPITAL TERRA

‘Mail Orders Welcome | State # Disciple or Plus
Please make cheques payable to D.L. HOOD)

NEWCASTLE UPON TYNE NES 1UT
ype etc. Overseas orders 33d £1.50 p&p

< oS rm
1 = oOo Ww October 1988,

ZGBZ°Z
ZGMZ yZ

—

— pp | oo <>. O=x
Qo

w= piss rat
at =

wert ~~, ES Ls Ge
D> ~m

oN
=
ee Su rai, wo (o-9

)

SOR

A

SS

Z 2

SUZ,

WE GO BUG HUNTING
ON THE SPECTRUM

vol 2 Ho 3. GOP ERTS oct 1988.

The Editor Speaks....sseeee
News On 4......
Your Letters...
WORDMASTER Review.
SAN Report......
Bug Hunting.....
The Adventure Corner....seee
MIDI = Part. 2. 00-0-c:essieetete
The Hack Zon@.esccccceseees
Space Saving Ideas...
Two-Face Competition.
Adding Basic Commands......
Command CodeS.cccccccccvees
Jiffy Calls. cccccsecsieslesiere

NEXT MONTH IN FORMAT
Streams & Channels Explained
Inside the PLUS D - Reviews

OPEN# Tiles - Ciphers

(C)Copyright 1988 INDUG. All Rights Reserved.
No part of this publication may be reproduc fore, vithout the written con:
the publisher. FORMAT readers may copy program saterisl only for theiz oun personel ust
FORMAT is published by INDUG. 34 Sourton Road, Gloucester, GL4 OLE, England. Telephone
0852-412572. DISCEPLE and PLUS D are trade marks of MILES CORD: RLOGY, Lekesice
Technology Park, Phoenix Way, Svanses, South Wales, SA7 SEH. 7 0752-78100. The
DISCIPLE is marketed by Rockfert Products, 61 Church Road, Hendon, 2 MG ADP

: . .

: . : . : . .

: . : .

.

3
4
5
6
8
9
2
5
9
1
3
4
7
0

1
1
1
2

eeccecee
2
2
3

Well the postal strike is settled but it will take.sone tine
to get over the after effects. There still appears to be a large
backlog in some areas and it looks like it will be at least the
end of October before things are back to normal (or what they
call normal for our appalling postal system).

I went to the PC Show at Earls Court in London (used to be
called the PCW Show) in mid September. It was (as is usual at
computer shows) Hot, Crowded and Very Noisy. It was also VERY
BORING. Over the last few years this sort of show has become
more and more expensive for exhibitors. Small companies, which
are usually the innovative and exciting ones, just can't afford
the sort of outlay required. Result - only the largest companies
can exhibit and that means boring old hardware and lack-lustre
software. It comes to something when the two biogest crowd
pullers where nothing to do with computers - a REAL aircraft
simulator (queues round the block for a go on that) and a sports
car (prize in the Computer Shopper draw).

We have already received many phone calls and letters praising
the new ADVENTURE CORNER we started in last months issue. We
have also had a couple of complaints that we are printing too
much to do with games. Well I have promised many times in the
past that we will not go the way of the ‘comics’ and fill our
Pages with games reviews but games do have their place. 99.99%
of ALL computer users play games, if you dont you are missing
something, its an ideal way to relax or to vent your
hostilities. The HACK ZONE is very popular, yes it deals with
games most of the time, but the skills it encourages you to
learn can be applied to any software not just games. As the
ADVENTURE CORNER develops it will cover problem solving,
programming and much more, If we are sent games programs for
printing then we will print them, a lot can be learned fron
other people's programming techniques and games often show these
to their best. FORMAT is for serious users of the Spectrum,
DISC{PLE or PLUS D, we dont treat our readers as ten year olds
but we recognise that a computer can be all things to all men
and we must cover as broad a spectrum (no pun) as possible.

Next month will see a change to the YOUR LETTERS page. We will
have a STAR LETTER spot with a prize of a £5 FORMAT Voucher to
the writer of each months Star Letter. The voucher can be used
as part payment of your next years subscription or to buy
anything we sell through FORMAT. So keep those letters coming.

See you next month. Bob Brenchley. Editor.

LNEWS ON 4 |
DONT BUY BLACK +2

There were very long faces on the TELECOM SOPT stand at the
recent PC Show at Earls Court. They had just taken delivery of
several. Amstrad+2s to demo their new releases, only they
couldn't.

Yes readers, Amstrad have finally done the dirty and releases
the +2.5 - a +3 circuit board in a +2 case. it wont run a lot of
128k software, it wont work with the DISCIPLE / PLUS D, it wont
even work with sone simple interfaces. Be warned, the only way
to tell the difference is the change of colour to a black
casing. Remember we warned you about this in February.

SINCLAIR

If Sir Clive Sinclair was dead he would be turning in his
grave after the Earls Court show. The man who gave his name to a
range of computers which, love them or hate them, were always
innovative, now has to stand by and watch ten year old
technology appear under his logo.

I refer to the Sinclair Professional PC200, a cut-down,
plasticy and bulky IBM clone launched at the show by Amstrad.
When the Q& was launched Uncle Clive was criticized for not
giving it IBM compatibility. #is answer was simple "I wanted to
do something new, not rehash other peoples old ideas".

Amstrad's new machine (I wont call it a Sinclair) has 512k of
memory, the old CGA graphics, a built in TV modulator for 40
column’ work, a keyboard that reminded me of the Commodore 64,
and a single 3.5 inch disc drive. At £399 (with Mono monitor)
its not really that cheap and at 18" x 13" x 4" it looks and
feels rather bulky.

popGy _Drscs

MEMCON, a major US manufacturer of disc duplication and
certification equipment, has just completed a survey of 25
brands of 3.5 inch disc. Its findings make interesting reading.
The company bought quantities of each brand in ten different
American cities. It then subjected them to tests laid down by
the American National Standards Institute (ANSI).

Only four brands:- Sony; TDK; ISM and C Itoh passed with
flying colours. Most others failed one or more tests even though
their manufacturers claim 100% certification. Memcom president
Jerry Korth said “It is a sad report, with 3.5 inch discs
becoming very popular, quality simply hasn't kept up with
quantity". He went on to say “There are strong reasons to doubt
that discs are tested to ANSI standards despite what producers
would have you believe"

‘The survey also found that there was no link between price and
quality, in fact Sony, TDK and C Itoh were all close to the
average price.

YOUR LETTERS
I would like to pass comment on the excellent article by Clyde

Bish (Format V2 #1). While I agree with everything Clyde says in
his article I do feel that it is incomplete without stating that
all the space saving, methods described will reduce the speed of
any program using them. The reason for this is that when a
number is entered in a basic line the editor places the floating
point form of the number after the ASCII data. Thea when the program is run the number is immediately available for use by
the computer. If you use any of the space saving techniques then
the number is not available and has to be calculated or fetched.
The following program demonstrates this:

10 FOR N=1 TO 10001
20 FOR N=1 TO 10000: LET X=0.123: NEXT N: STOP
30 FOR 123": NEXT N
40 LET Y=0.123: FOR N=1 70 10000: LET Xe¥: NEXT N

NEXT Nz STOP

The timings I measured on a +2 in 48K mode were:

LINE ¢ TOTAL TIME ASSIGN TIME EFFICIENCY

10 41 secs 0 secs ==s
20 61_secs 20 secs 1008
30 237 secs 196 secs 10.28
40+ 70 secs 29 secs 68.98
40* 117 secs 76 secs 26.38

+ no other vars declared * 52 other vars declared

Although this in no way detracts from the article it could be
misconstrued by the novice that space saving is more important
than program speed. I feel the article should have pointed out
that the techniques described should only be used when space is
short and then used with discretion, as there is a speed penalty
for each compaction. I look forward to more well presented
articles such as Clyde's in future issues.

Yours, Paul Conway.
Dear Editor,

It may interest PLUS D users to know that you can save space on disc when saving old 16k games by doing the following -
POKE @2330,64. This alters the 48k Snapshot to 16k

(33 sectors). To return to normal - POKE @299,192:
POKE @2330,192.

Yours Sincerely, Ian Spencer.

Letters printed may sometimes be edited for length or clarity.

Your letters are needed for this page. You can write on any subject you think may be of interest to other readers. Keep then
short and to the point. Go on, get writing..

5

By: John Wase.

Although more than a mere word processor (having been designed
to extend to a complete Desk Top Publishing outfit), Kordmaster
is sold on its own, can be used on its own and is eminently
usable on its own. As a mail order purchase, it arrives either
as a cassette with instructions to transfer to a disc, or on a
disc (at a reasonable extra charge) direct from PCS (note the
new name for CARDEX), who have sensibly arranged their code with
returns to Basic for Loads and Saves. This means that any disc
system (or a microdrive, for that matter) is easily catered for
with the simple instructions provided. I transferred all the
files (including those for DTP) to a PLUS D disc, and for good
measure, to a Discovery disc as well. Once Wordnaster itself is
transferred (good, straightforward instructions), any other
files are shifted through the program menu by loading each file
from tape and then selecting a save to disc, so you certainly
don't need a header reader or anything complicated; the program
does it all for you. Beware, though: transferring the complete
DIP suite (including coffee and mistakes) takes around an hour
and a half - it's probably well worth buying their disc version.

So, it's all there on the disc. What you've got is a stand
alone wordprocessor which runs on the Spectrum in 48K mode, yet
still has room for 15 or so pages of double-spaced A4 text. Load
it. A cyan screen appears with a prompts section entitled "File
handling" in the bottom three lines. Before you can type in
anything, you must press "C" to create a file - in other words
to. give what you are going to type a name! Beware, though, it's
all too easy to bungle the initial keystrokes and call it
nothing! The program will accept this, but try recalling it
after saving several other files to memory...... AS soon as you
have named your file, you are into the “Options” menu: the cyan
screen changes to white, and prompts include saving the file to
@isc or tape, renaming the file, P for the print menu, alter
column width, word, character and free-space count, Q to quit
back to "File handling" (which leaves your file intact, but in
memory, enabling you to work on several documents at once) and
"Enter® to enter the file, get the cursor and start typing. Sut
I'm going too fast; there are still several other commands in
the "File Handling" menu that’ I've not yet mentioned. For
instance, you can load a file from tape or disc (D toggles
@rives 1, 2 or tape, K overwrites screen with a disc catalogue.
Qwith a "catalogue" of files in memory: you can erase files
from disc, delete from memory, join files in nenory or save the
complete contents of memory to disc as one file).

Back to the file we've created or loaded: "Enter" and we're
away. There are surprisingly few prompts in this menu: you've
got minimal hints and then you have to guess or refer to the

handbook. Extended mode toggles insert/overwrite modes (it gets
confused, however, when you use it in the text, for instance to
insert Square brackets which invariably overwrite the text into
which they're being inserted). Fast scroll (8 lines at a tine)
is toggled by symbol shift/g, and there are facilities for
eleting/undeleting words (useful for swapping odd bits round).
There are also block move/delete/save/copy facilities and
search/replace (quite good; it can be set for case or ignores
it, and will ignore punctuation, etc.). Underline shows on
screen with symbol shift/i, all the other special control codes
have to be put in either as embedded control codes (using the
graphics key) or in a "Command line". These are great: tru
video inserts a new,yellow line beginning with a “greater than
sign followed by the cursor, and you can then write real English
commands like "margin 8", "fill" (this right-justifies the
printed page by padding each line with spaces) or "L” (for
LPRINT) followed by the appropriate decimal codes. The command
line is not, of course, printed; it just sends special
instructions. The embedded codes are also great, allowing you
easily to print H2S04 without loss of justification: a current
limitation is that they will accept only three numbers (though
they tell me they're working on this).

Although cursor movements are otherwise pretty limited, there
is the facility to jump to any page. Headers, footers, set page
length, page numbering and form-feeds are available, and lots of
special effects are enabled by inserting command lines in a
header. The tab command works only with the printer and is
likely to ruin justification: because of this and because of the
way the thing is not WYSIWYG, tabular work is difficult with
tables of up to 64 characters across and almost impossible with
longer lines. although the printer can quite happily be
instructed to print lines as long as 255 characters, and
ordinary text will equally happily be printed thus.

There are one or two special features. For instance, the
options menu contains an ASCII command that will strip out all
non-standard codes from textfiles, so that any code file can be
read in. Beware, though: I tested it with Tasword+2 and The Lest
Word and found that they must be unjustified first (i.e. ragged
right edge), or all sorts of odd spaces appeared in the text and
were very difficult to remove subsequently. Pictures are also
accepted as a SCREENS: you can then cut out a section, flow the
text round it and save it along with the text: compression
techniques ensure minimal amounts of code and prevent your
filling the disc with screendump information. Finally, a
helpline is available from PCG; invaluable support when you get
stuck!

I found only one bug, and this only in the DISCiPLE/PLUS D
version (aren't you lucky, Discovery users). If you “break'
during printing, you get dropped into Basic and lose your text
file (yes! I lost all this). So save it first. If you didn't
(like “me), you can recover with RANDOMIZE USR 59371: name the
file anything you like at the prompt and back will come your
textfile with the new name (bless you, helpline).

The instruction book is very small, and I found it a little

7

difficult to follow, particularly at the start, although once
you get to know the program, it's logical as a reference. I also
@id not like some of Wordmaster's 64-colunn characters and found
the screen scrolling rather slow and the cursor keys over
sensitive for my personal taste. These, however, are minor
gripes. Wordnaster is a simple, straightforward program without
@ata or mail-merge facilities, macros or conditional printing:
nor is there at present any provision for spell-checking or
thesaurus. Many users will not really want these facilities, end
apart from the one or two odd quirks in tabular work and long
embedded control codes, they will find that Wordraster is
particularly easy to use, enables a printer to be driven very
easily, and, most of all, offers excellent value. I will bring
you a review of the full desktop publishing package in the near
future.

Wordmaster is £11.90, PLUS D/DISCiPLE 3.5" disc £1.50 extra,
from PCG, 3 Barton Street, Barrow in Furness, Cumbria, LA14 2=?.

rere

oA AeErPOR
By: Bob Brenchley.

Each month from now on I will try to bring you the latest news
(and some of the inner secrets) on MGT's new Computer SAM.

WHAT IS SAM?

Well, sone of the finer details are still only in the mind of
its creator Bruce Gordon. SAM is the culmination of many years
work which, along the way, also produced the Gordon ¥icrofrane;
the DISCiPLE and the PLUS D. Bruce has, without doubt, produced
some of the best add-ons the Spectrum ever saw, but like many
people in the industry his long held dream has been to build his
own computer. SAM is the result of this dream, and what a dream
machine its going to be.

I first heard of SAM in late 1987, at that tine it vas going
to be a 64k or 128k machine with two screen modes, 16k of ROM
and _a few extras. A year later it boasts 256k of RAM (expandabl
to 512k), 32k of ROM, Z80B processor (the faster brother of th
one in ‘your Speccy, 4 screen modes, a palette of 64 colours, a
super sound system, MIDI interface (in and out), DADI interface
RGB/Composite and Tv output. All for less than £150. All 256k of
on-board memory will be usable in a sensible way - none of the
hideous page layouts of the +2 and +3.

Next month I hope to bring you details of the screen layouts.
In the mean time I recommend you get on MGT's SAM mailing list
50 you get to the chance of being one of the first owners of
this new wonder machine. Write to them at the address on page 2.

To Be Continued.

BUG HUNTING
For Spectrum Programmers

By: Ken Elston.
Bugs and Errors, the bane of a programmers life. They say “There is ALWAYS ONE MORE BUG in a program" and I've never found a truer saying. So come, read on, I will try to show you how to track down those elusive bugs. This article is writtén with 48k Programmers in mind, but most applies to 128k owners as well.
The first error encountered by most Spectrum users is the flashing question mark which indicates a syntax error in the line you are trying to enter. Experience, and the manual, soon show that it is caused usually by typing in a keyword letter-by-letter, or by bad punctuation, for example omitting a semicolon or left out a set of quotes ("). The marker is set to the end of the part of the line the Spectrum has understood. So normally (but not always) the error is after the flashing guestion mark. Look along the line, is there a mismatch of brackets or quotes? Try moving the edit cursor along the line, does the cursor jump over each keyword? If not then you have typed out the word instead of using the single key entry system.
The most frequently occurring error code is - 2 Variable not tound, When you create a variable - lets say by LET A=10 - then the Spectrum will know what you are taking about whenever it finds the variable 'A' in your program. Error code 2 results when the computer reaches a variable in the program that has, so far, not been given a value. After an error report are two numbers separated by a colon (ie 120:2) these give the line and statement number which produced the error. Check the line, lets say it reads 120 LET A=10:LET BeA*Tl well the error is being reported in statement 2 and as 'A' has been set in the first statement it must be the variable 'T1' that can't be found. Look back through the listing, if you can not find a statement giving ‘T1' its initial value then add a line setting it a value you think is right (you can always come back later and alter it if you need to). Also check that you haven't mistyped something, the number 1 and the letter I (or a zero and the letter 0) are very easy to confuse.
Remember that the mistake may not be at a lower line number, with GOTOs and GOSUBs in a program it could be almost anywhere so follow the program through until you find it.
Although the majority of error codes are explained adequately in the manual, the report "B-Integer out of range" can be confusing. An integer is a whole number - 1 is an integer, 1.5 and 3.75647 are not. The error occurs most frequently when you try to print something beyond the limits of the screen. PRINT AT 0,31;"a" is acceptable and will print a letter "a" at the top right of the screen. PRINT AT 0,32;"a" would not be

9

possible as its off the edge of the screen, The integer 32 would
be out of range, resulting in error code "3". The error is more
@ifficult to detect if variables have been used 2s co-ordinates
and your character, or series of characters, is being printed in
varying positions. If the instruction PRINT AT 0,x;"a" produces
report code B, make sure that the value of x never increases
beyond 31. Integer out of range can also be found when you are
POKEing a number into memory. The biggest number which can be
POKEd is 255. In this case the error code will occur in the
statement containing the POKE statement. In many cases though,
the error will have occurred in a DATA statenent, somewhere else
in the program, which is used to hold the values you are trying
to POKE into memory. Have you left out a comma? has 201,16
become the large number 20116? Negative numbers are also ‘out of
range’ so did you put a minus sign in by mistexe?

Another very frequent error code is “ - Out of Data’
will occur in a line containing a READ statenent. The
though, will have occurred in one of program DATA
which may be nowhere near the READ line. A READ command
the computer to a DATA line to collect the next piece of DATA
contained there. This is often done within 2
especially when graphics are being set
FOR Ix1 TO 8: READ N: NEXT I - will send the conputer to the
DATA lines eight times, for eight separate pieces of
information, If there are only seven pieces of DATA there it
will return to the READ line and product the OUT OF DATA error.
When there are several DATA lines they will 212 have to be
checked, because the piece of DATA you have omitted was not
necessarily the last.

In some cases the computer will follow the program correctly,
without producing an error code, but from the orogramuers point
of view the program contains a BUG - it ain't doing what you
want it to do, In that case RUN the progran and SR=AK into it at
the point where it appears to go wrong. That will produce report
code '9 STOP statement’ and the line/statement on which you have
sTOPed the program. This method makes it easy to locate the
rough area of the program which may contain the problem. Now
PRINT some of the variables, look for values outside the range
you think they should be, print the value of the control
Variable in a FOR-NEXT loop so you can see how far it-got before
you pressed BREAK. If your program crashes before you can stop
it then add STOP statements into the basic just before the point
at which you think it goes wrong. Keep looking, keep PRINTing.

Programs which you copy from magazines, books or from friends
can be difficult to de-bug because they may contain programming
techniques which you have not yet learned, or sinply because it
is often difficult to follow another programmer's logic. The
flashing '?’ indicating a syntax error may appear frequently. In
that case check carefully what you have copied. You may not have
recognised words such as TO or THEN as keywords. Nake sure that
when the "is not equal" sign ‘<>! appears in a listing you
always enter it as one character and not 25 "is less than" ‘<*
followed by “is greater than" '>'. Most problezs are caused by
mistyping so double check each line, or better still cet a
friend to go through it (he may find the error you missed).

10

Sometimes a program listing in a book or magazine will contain
what seems to be a very obvious error. If it contains key words
or symbols which are not on your computer, check that it is
intended for your machine, you can not type a BBC program into
the Spectrum no matter how good the program is. If a program
contains the command GOTO or GOSUB to a non-existent line number
then the computer will simply go to the next numbered line after
that one. That is a sign that a program has been developed and
improved and is rarely an error. when you have errors in a
program, first check the report codes listed in Appendix 3 of
the manual. It may then be necessary to read the appropriate
section of the manual.

Always type in a program exactly as it is listed,’ dont make
changes (however good you think they may be) until ‘after you
have tested the program as the author intended. Once the program
is working you can make any alterations you like and when things
go wrong you can confine your search to the changes you made.

Again - remember that the error is not necessarily on the line
which. produces the report code; that is simply the line where
the computer meets the problem for the first time. Always check
carefully every line connected with the line containing the
error code and the mistake should be easy to locate.

A few other points to keep in mind when writing programs:

1) Always make regular saves while entering your program. Dont
RUN the program until it has been saved just in case you get
that fatal crash.

2) When saving your ‘improved' version of a program DONT
overwrite your old version - you may want to go back to it at
a later date.

3) Put lots of REM statements in. Six months later you wont
understand your own coding unless you do.

4) Split you programs up into small sections and test each on
their own, Much easier than testing the whole program.

Finally, hardware problems may also cause errors in programs.
Any alteration to the power supply can cause a program to CRASH.
In that case the screen display may change dramatically the
keyboard will have no effect. The only solution is to unplug
your computer or reset it and begin again, making sure that your
Power supply and interfaces are connected firmly. Clean up the
edge connector with a hard (ink) rubber, dont use a chemical
cleaner as you may damage the circuit board.

I-hope the above will help you the next time you find the odd
bug in a program. I will be back in the near future with another
article to help you improve your basic programming skills. If
there are any problems I can help with then please drop me a
line c/o FORMAT. I can not give a personal reply but I will try
to help you out in a future issue. Thank you for reading.

Back soon...

"

Having launched a new column devoted to adventures, Format is
not about to assume that every reader out there is an expert on
the subject. Therefore, this month, I ill be concentrating on
what adventures actually are and how you play them. from the
basic principles to a few examples of th ny features, good
and bad, that can be found within adventures of the past and the
present.

All adventures have basic similarities. For example, you, the
player, are thrust into a fictional world or situation and are
given a task or quest to complete, upon which the game ends. In
the meantime a number of puzzles are presented to the pleyer
which are designed to hinder, educate and hopefully entertain
the player. Interweaved throughout all of this is the plot. Part
of the skill of the adventure author in this situation is to
maintain the integrity of the storyline while still presenting
thoughtful and logical puzzles of a varied nature.

The game world consists of a number of “locations”. These
locations can be rooms, parts of a landscape such as fields and
mountain areas, a aixture of the two, and so on. They can be
situated on earth in the present day, on an alien spaceship in
the future, in a haunted house during the Victorian era or
wherever the adventure author decides to base the story.
Movement is possible between locations by moving in a certain
direction to the desired location.

To illustrate this structure and the method of movement within
an adventure consider the timeless story of a Knight in shining
armour who is about to attempt to rescue his beloved Princess.
Unfortunately, the Princess is imprisoned in, for the sake of
simplicity, a small garden shed which lies amongst a cabbage
patch. Between them lies a large river. Here we -have four
locations. The Knight, which is the character that you are
controlling, sits on his horse amongst sone bare crasslend. Thus
our first location is the “bare grassland". The “river” is the
second location, the "cabbage patch” third and the "garden shed”
is the fourth, and final, location. Each location will, when
entered, give the player a description of the terrain, any
objects to be found within the location, the directions that the
player can move to and any additional information which will
probably be superfluous to completing the game but will build
the much needed atmosphere.

Movement, in adventures, follow conpass directions with the
imaginary compass laying flat on the ground. In the above
example the river lies directly in front of the Knight so to
move to the river location the player types "Go North" or

12

“North” or just simply "N". If the river lies to the left of th
Knight the player would type "Go West" or "West" or just "W"
There are a number of permutations of commands when moving in
different directions. The latter are just three examples.

However, the universal method of movement is to type in the
first letter of the direction you wish to go. It is, obviously,
a much quicker method too. while some adventures use the four
cardinal points for directional movement ny have the
additional options of moving South-West (Si), North-East (NE)
and so on. In addition many adventures attempt ‘to introduce a
three dimensional aspect to the adventure by allowing the player
to move Up (U) and Down (D). However, just because an adventure
says that you can only move in the four cardinal directions try
the other directions just in case! Similarly, a frequent ploy,
which mainly occurs in some of the older adventures, is to
provide a brief locational description and then only give, for
example, two of the possible three directions that are available
for movement! The reasons for using this rather unseemly tactic
are to make the adventure unnecessarily difficult, which smacks
of a lack of imagination on the author's part, or because the
adventure was badly designed and playtested, or, more rarely, to
reflect problems presented by the game environnent.

When moving from one location to another, whatever the
adventure, you will have to face the consequences. For example,
our Knight has just been instructed to go north, to which lies
the river. On his arrival he and his horse may be swept away by
the current to die a watery death or his horse may be an
excellent swimmer or a sea-monster, or rather, a river-nonster
may arise to gobble horse and rider in one mighty gulp. A good
adventure will give a subtle hint that all is not well within
the river if danger lies within. Many poor adventures liberally
sprinkle “sudden-deaths” in numerous areas of the adventure.
This leads to frustration on behalf of the player who has to
save the game position before entering a new location for fear
ef, yet again, being done away with. There is always the
possibility of not being able to enter the river at all until an
alternative means of crossing is found. However, let us assune
that our horse is treading water in the centre of the river. To
proceed to the cabbage patch, which again lies straight ahead of
us, the player types "N", or similar. If for sone reason that is
not possible then sit and think for a second because here we see
another aspect of adventuring. The appreciation of the gane
environnent. As we are sitting on a horse which is treading
water in the centre of a river the player may try "Swim north’
which is specific to the situation in hand.

Upon the arrival at the cabbage patch, the player is given a
description of the location. In the location can be seen a
golden cabbage growing quite happily amongst the rest of the
€rop. Obviously such an object will be important and extremely
useful. So you immediately attempt to GET the prize cabbage.
Here we see another side to adventuring - the infamous parser
and its associated database of vocabulary.

Firstly, the game might deny any knowledge of the cabbage's
existence by replying; "I cannot see a cabbage." The player

13

must try again from a different angle before siving up on the
cabbage and deciding that the it will play no part in the game.
For example, the game might give a favourable reply if you
attempt to GET the GOLDEN cabbage. Again this fault will
generally occur in older games but be aware that it can occur at
any time. The reason for the initial negative response could be
the result of an adventure author's very small vocabulary
database. The program only responds to the “golden cabbage” but
not "cabbage". If two or more cabbages are used in the, game as’
objects then the program should ask which cabbage you wish to

Secondly, the word GET, one of the most used words in
adventure games, may not be accepted. Other similies must be
tried such as TAKE. Other situations may occur where the word
you type in is not accepted so the player must try other, similar words. Another example may be the lack of response to
the popular EXAMINE command. The player should try alternatives
when objects are present within a location such as LOOK or
SEARCH. Many adventures will, after an object has been examined,
give extra information if you then search it. For example, a bed May be EXAMINEd without much valuable information’ being
obtained. SEARCHing the bed may result in the blankets being
removed’ to reveal a further object. In addition if you LOOK
under the bed more information may be revealed. Of course the
adventure may be so basic that none of the latter work. Unfortunately, a great deal of atmosphere is lost when this facility is neglected to the degredation of the entire gane.

I will continue with the parser and the vocabulary next month
in Part 2 of this feature. Tn addition to which I will be
catching Red Herrings, solving Puzzles and rescuing that
Princess.

Bradway Software
Letta-Head Plus

i 3 § iB i i
sake roe ro fey
SESRES es ecoerioene stows ate

Bayar, IRE
eee ieee Feet
Leon & Deagy na oe pte A Bea poco represen Fei hate Wesel prs sal ope popes atone Pes ace

"Hillsett", Upper Padley, Grindleford, Sheffield, S30 1JA._ phone (0433) 30799.

4

aMIPDIs
BEGINNING MIDI_PART 2.

A practical look at Setting up a MIDI system

By: Ray Elder.

CONNECTIONS.
The whole system depends on the MIDI sockets that connect the

computer interface and the instruments. These are five pin DIN
sockets and need suitable leads fitted with five pin DIN plugs.
The comnon Hi-Fi leads can be used but in a multi-instrument set
up then they can cause problems, it is better to spend the extr
cash and buy leads designed for the purpose. - These are higher
quality and will eliminate any chance of connection problems.

However a simple single or 2/3 instrument set up will probably
work without problems using the cheaper leads. Should you
purchase this type then be careful as they can be wired in a

mirror image - do not
buy then if they have
the diagram shown in
fig 1, make certain that

QHLY buy Leads that they are the straight
‘shew this symbol, line wired type which usually display the

diagram shown in fig 2.
show this syabo

Hey E16 2,

There are at least two sockets on a midi instrument and the
better ones have three. Having said this, Yamaha only fit two
but provide an internal system that ‘echoes back’ the signal
thereby making the midi out double as a midi through. These
sockets a:

MIDI IN. - This is the socket that accepts midi data from
another instrument or computer, it is usually connected to the
computer or instrument's midi out or midi through socket.

MIDI OUT. - This socket sends the midi data that is generated by
the instrument or computer to which it is fitted. It does not
(except in the case of Yamaha instruments) pass on signals fron
other instruments in the system.

MIDI THROUGH (or THRU) - This socket passes on all the data that
comes into the midi IN socket to the the next instrument in the
system,

Output to Axpliflerst
I have included

two Aiagrans (figs 3
& 4) to try and help TH OUT THRU
clarify this. Fig 3 IDI KEVEORRD
is an example of the
most basic of «= Hb

15

systems - a computer linked
to a single instrument -

XIN OUT THRU and fig 4 is an example of
‘DRUM WACHTNE. a more sophisticated system

- one very similar to mine
- and is still a simple set
up in comparison with those
found in many recording
studios! (KosOutput te Raplifiers

Ho4 ALMORE VERSATILE SYSTEM, The problem with all midi
systens is that there is

only one IN socket on the recieving device, and when this is a
computer it be rather limiting. I alvays use the keyboard
when recording sequences, but find it best to use the drua
machine to control the tempo on playback. I also like to make
dumps of system exclusive data (this is drum patterns,
synthesizer programs specific to each instrument) for tape
storage via the computer.

You cannot simply wire two or more midi leads together, the
receiver becomes terribly confused, and so it often means a lot
of lead swapping with of course, the usual wear and tear on
leads, plugs and sockets. The solution is to buy one of the
many switch boxes on the market, I include one supplier's name &
address at the end. If you have more than one instrument then I
strongly advise buying one.

TERMINOLOGY.
In this chapter I also include a glossary of the terms that are
related to the music and technology we are using, this is to
save having to explain each one every time I use it.

During the series I will be making references to using the
MICON system and software because it is the one I use almost
exclusively. This is due to personal working preference and in
no way decries the quality of the other midi interfaces and
software. Although a few things are specific to this system,
most of the techniques and suggestions are easily used on any of
the others on the market. Certainly one advantage of the xRI
system and software is that it will work with microdrives and
hence the disc system - the other units do not.

GLOSSARY

SEQUENCE - A series of notes or MIDI events that is stored
on the computer and sent back to the instrument(s) on replay.

REAL TIME - A method of recording MIDI data as it happens, ie.
Playing a tune on a keyboard and recording it as you would
on a tape recorder. This is a fast way of working but errors
have to be corrected by replaying the whole bit of music.

STEP TIME - Entering MIDI data item by item, ie. typing each
note pitch and length one at a tine. A slower nethod of entering
music but more accurate and editing of each item is
usually possible.

16

~

EDITOR - This is usually used to refer to a program which allows
you to use the computer to amend or create the sounds patches in
a synthesiser. They have to be designed specifically for the
instrument you own and make sound synthesis much easier by
displaying many parameters, often in graphical form, at once.
PATCH - The combination of waveforms, oscillators, envelopes,
etc. settings that make up the sound of a specific voice. Often
referred to as the 'voice' itself especially with keyboards that
do not provide synthesis programming.

VOICE - Each individual note that can be played is a voice.
Often confused with a ‘patch’. For instance a CZ101 may be used
with four voices simultaneously but limited to one patch, or
alternatively, four single voices each set to a different patch.

INSTRUMENT - An individual musical unit. Yamaha refer to their
FBO1 as having a maximum of eight instruments, in this mode each
has one voice and each can be set to a different patch.

CHANNEL - There are sixteen MIDI channels 1 - 16 (on sone
instruments they may be numbered 0 - 15). when an instrument is
set to a channel in Poly mode it will only play the data on that
channel and ignore anything on any other channel. All data
including the data on the channel the instrument is set to is
passed on out of the THRU socket.
TRACK - Similar to a tape track, this refers to a sequence of
data recorded on the computer or sequencer and can usually be
set to a specific MIDI channel. The XRI real time sequencer can
record up to eight tracks and each track can have as many notes
as you wish (eg. chords). Their Step Time sequencer also has
eight tracks, but each track can only play one note at a time.

QUANTISE - A method of auto correcting a piece of music. If you
play slightly out of time then notes can be moved to begin
exactly on the beat. Different levels of quantisation are
usually provided to allow for time variations. Too much
quantisation tends to produce a rather mechanical effect.

SYNC - Short for syncronisation, this keeps all the instruments
playing in time, there is usually two main options:

1, Internal sync - the instrument produces its own MIDI time
pulses for other instruments to work with,
2. External sync - the instrument takes its time signals
from another instrument.

These are usually needed when using a drum unit. I tend to
record using the computers internal sync, switch leads and then
play back using the drum machines time data. The ol drum
machines used a different type of sync data but the XRI Micon
unit has a socket to allow these to work.

MONO - Has two meanings: When referring to an instrument it
means it can play one note, and when used to refer to MIDI means
the instrument can split its voices between several channels.

17

POLY - Also means two things: When referring to an instrunent
means it can play several notes at once, when referring to MIDI
means that you can select which channel the instrument will
receive data on.

OMNI - In this mode the instrument will receive and play data on
all the MIDI channels. Sone cheaper instruments will only
operate in this mode and they are of very limited use.

EVENTS - All MIDI data is referred to as an event, each event is
one single command such as note on, note pitch, note off.

GATE - With the XRI system the gate represents the percentage of
time the note is played to its full value, this is useful in
playing staccato and legato notes.

Finally this month I would like to request for any other nidi
users to send in suggestions and hints & tips to share with us,
anyone who has any queries or problems please write to me and
I'll do my best to help, and anyone who has any music and would
like to submit it I would be pleased to listen and perhaps we
could make a compilation tape for distribution through our own
PD supply. Meanwhile I'll remind you that my own tape is
available for those interested, for £3.95. This is an audio tape
and you do not need a NIDI system to listen to it.

Please send all contributions directly to me at 1 Periton
Court, Parkhouse Rd. Minehead, Somerset, TA24 8AE.

ADDRESS AND DISC MANAGER
For PLUS D and DISCSPLE (version 3 covards)

THREE prograns, on one 3}" disc, handle ell your Address end Disc orgenisation
at a truly realistic costing.

007 MENU. With the enormous nusber of K per disc, this prograa is essential to
keep a track of vhich disc your program(s) is on. Sizply insert your éisc(s)
then press a key and a Full CAT is held in a record (Upto 2200 Records). Can
SEARCH for any program and INSTANTLY tell you which disc its on. (and even LOAD
it).
007 SUPERFILE. Holds upto S00 nene/edéress records and finds any one
INSTANTLY. Super Fast SEARCH, ALPHA SORTs, etc. Prints as FILES or LABELS by
SEARCH, Sort or String.
007 LISTFILE. Holds 1,000 single line records. Fast SEARCH, SORT, ALPEA SORT,
RENUMBER. Can print all or selected records.
ALL programs can Print Out to ANY type of printer.

AIL three prograns on one 33° disc... 29, Q5

2X-GUARANTEED (G.A.Bobker) Dept: INDUG, 29 Chadderton Drive, Unsworth, Bury,
Lancs, BL9 8NL. Tel: 061-766 5712 (Do NOT phone if STAR TREK is on 7V)

18

FACK-Z00E
By: Hugh J. McLenaghan.

I'm sorry that this article on the conversion of Karnov was
delayed, but we decided that the way I had planned was going to
be too long. I will describe here how the conversion was done
ana the problems encountered. If you wish the conversion, then
send a S.A.E. and a disc and how you wish it saved, i.e. 40/80
tracks SD/DD and $S/DS. The programs and the instructions on the
conversion will be sent A.S.A.P.

Now for the method:-

After MERGEing the BASIC loader the following lines were of
usez=,

10 BORDER 0: INK 0: PAPER 0: CLEAR 32767
20 LOAD "" CODE 65088
30 RANDONIZE USR 65088
51 SAVE "load" CODE 32768,448

LINE 10 gives us the CLEAR address, line 20 is the load address,
Line 30° gives us the CALL address and line 51 tells us the
eng’

After loading and disassembling the code I noticed that the
first 13 commands were doing something specia

65088 LD HL,65107 ;Start address
65091 LD BC,384 ;Number of bytes
65094 DI jDisable interrupts
65095 XOR_A. Let a=0
65096 LD R,A jLet refresh register=0
65098 LOOP: LD A,R jLet asrefresh
65100 XOR (HL) ;Xor_a with PEEK HL
65101 LD (HL),A ;POKE HLA
65102 INC HL Let HLsKLe1
65103 DEC BC Let BC=BC-1
65104 LD A,B IF BC>0
65105, ORC THEN
65106 JR NZ,LOOP ;GOTO LOOP

This is a decoding routine, the bytes from 65107 to 65490 are
xORed one at a time with the refresh register. This method is a
simple one, but it is used in many games. After I decoded the
loader I then disassembled it, from this the load address
(32512) and the length (17152) of the main code were found.

The next thing I did was to look for a level loading routine
in the main block of code, after quite a long search I found the
routine at 33534, At a first glance it looked very complex, but

19

after examining it closely I found it very easy to understand.

What it does first is it checks a byte in R.A.M. which holds
the level number that the computer wants to load, it then
compares this number against another byte in R.A.M. which holds
the level loaded in the computer if the numbers are the same
then the computer returns to the main code, otherwise it
continues. The computer then loads the header of the level from
tape and compares this against the level that it wants if it is
not the right one then it repeats the above.

The screen is then loaded in a compressed forz and expanded.
Next the load address is set to 30462 and the length to 2306 to
loads the next block of code. This block of code has not yet
finished loading, this is because of its clever loading systen.
The start is now set to 49152 and the length set to the contents
of 30462 and the loading is continued. Therefore the computer
has loaded two blocks of code while you think that its just one
block. Here is a shorter explanation of whats going on:

~> If level wanted=level loaded then return
-> Load header of next level
=> If not level wanted then repeat above
=> Load compressed screen then expand it
~> Set load address to 30462
-> Set length to 2306
=> Start loading
=> Set load address to 49152
=> Set length to contents of 30462
-> Finish loading
=> If level loadea<>10 then return
-> Load final screen
~> Return

All of the above happens without you seeing it.”

After I discovered the above the rest of the conversion was
quite easy to do. The hardest bit is finding places to put the
new loading routines, this is because the DISCiPLE loading
commands are larger in length than the normal loading routines.

When you get the conversion disc you need to format a blank
disc, then save a system file onto it. You then boot up the
conversion disc by typing LOAD d*"KarnConv" After doing this you
insert your blank disc and press ENTER. Then insert the
conversion disc and press ENTER, then the program will tell you
what to do. I hope that you enjoy your converted Karnov!

If you wish a better explanation then send me a large S.A.E.
and I will send you notes and more information.

I would like to hear from anyone who has ideas for the
HACK-ZONE as all the ideas so far have been ny own. What I would
like is some ideas on either programs you would like to s
converted or games you would like POKe's for. I would also lik
to see your conversions, pokes etc, which I will try to print in
future HACK-ZONES.

Thats all for now so see you next month.

20

al

By: Clyde Bish.

This article is a pot-pourri of ideas to save that odd byte.

Messages appearing in the edit area, lines 22 & 23, (PRINTed
using #0) can be cleared by using simply INPUT; rather’ than the
more "expensive" PRINT #0;"(32 spaces)". Text on the lower part
of the main screen, for example, below a map or illustration.
can be cleared by using INPUT AT x,0; where x = number of lines to be cleared +1. The current PRINT position must be above the
area to be cleared or the screen display will scroll up. So to
clear the bottom five lines of screen (assuming the PRINT
position was below row 17) use:-

PRINT AT 0,07: INPUT AT 6,0;

which is 33 bytes shorter than the more usual:-

POR f=17 TO 21: PRINT AT £,0;"(32 spaces)": NEXT £
If you need to clear rows in the central area of the screen you will have to resort to this loop method, but with a

difference: There is no need to use 32 blank spaces. Two commas
will do the job! So to clear rows 10 to 15 use:

FOR £210 701 : PRINT AT £,0,,: NEXT £ (saving of 30 bytes)

Windows (i.e. not whole rows) are more difficult as you can't
use the double comma dodge, (although a single comma will clear
the left half of screen only!) If its a routine to be used often
then make it a subroutine. So if you want to clear the centre 10
columns of the bottom five lines use the subroutine:-

9000 FOR £=17 TO 21: PRINT AT £,11;"(10 spaces)": NEXT £: RETURN

and call it whenever needed. In a similar way you can use a
method very similar to the PROCEDURE statement available on some
computers, to clear a window of any size anywhere on screen.
Your subroutine would be:-

9000 FOR fer1 TO r2: FOR nscl TO c2: PRINT AT f£,n;""z: NEXT az N
EXT f: RETURN

Before you call it you must set the variables to the row/coluan
of the corners of the window. So to clear a window from rows 5
to 10, and columns 10 to 20 use:

10 LET r1=5: LET r2=10: LET cl#10: LET c2=20: GOSUB 9000

Two final points about subroutines. Firstly don't assume that

21

using a subroutine will always save you bytes. There's no point
in having a subroutine you only call once! Also, a small
subroutine and its call may take up more bytes than just
including the routine each time you need it. Secondly, never
jump out of a subroutine. Always leave by way of a
Galling a subroutine puts 18 bytes on the memory stack.
RETURN these come off, but if you jump out they stay and the
stack grows until memory is used up. You can, of course, call
one subroutine from another, or even have a subroutine call
itself, provided you eventually RETURN back to the main pr

Another byte-user is the control variable used in a
NEXT loop, i.e. the 'f' or 'n' in the above examples. Se
takes 18 bytes which you wont get back when the loop is
so its a good idea to reserve certain variables for this pu:
only. (I personally use f or n as they are on the FOR an
keys and so less finger movements are needed when typing).

The little understood, and therefore little used, DEF IN
command can also save a lot of bytes if used sensibly, Look in
your manual for the various forms of syntax but here's a simple
use. Say you have an adventure where sone outcome is determined
by the throw of a dice, Dungeons and Dragons style. Normally you
would need to include a line such as IF INT (RND*6+1)
Subroutines won't help here as you'll probably want to compare
it with a different variable each time, but DEF FN can be used.
First define your function with:-

DEF FN r()=INT(RND *6+1)

Then whenever you need the dice throw use:-

IP FN r()= ...e6

If you want the total of two dice use

DEF FN r()=INT(RND*6+1)+INT(RND*6+1)

Because of the way numbers are held, nuneric DATA always takes
up a lot of space. If variables are set for numbers (e.g.
LET o-0) then a great deal of space can be saved. This can be
put to good effect using the BEEP command. A succession of BEEPS
to play a tune would obviously be byte-wasting, so use a loop,
set to the number of notes, READ the length and pitch of each
note from DATA, and BEEP using the variables read:

NEXT £ 10 FOR f=1 TO 10: READ 1,p: BEEP 1,p
20 DATA

If you declare variables with capital letters the sane as the
name of the note - A, B, C etc (use TC for top C, 3b for 3 flat,
C# for C sharp), and others for the note length, declaring the
shortest first, then the others in terns of this one (e.g. g=.5
(for quaver), keq+q (for crochet - You've already used C!),
dk=q+q+q (for dotted crochet) etc). you can enter the BEEP DATA
directly from the stave music simply by entering the variables
for the note length and pitch.

More space saving next month.

22

TNO-TACE
CONPETITIO

When I visited MGT at their sw
shown a collection of publicity photos th
Well one of them caught my eye and gave ne t
competition for FO:

The competition is simple, write ona plain
what you think Alan and Bruce are sayin:
write your nane, address and menbe:
the paper and sent it to:
Road, Gloucester, GL4 OLE, To arrive no later ti
16th December 1968. You can make as

Alan and Bruce will
funniest. The two wii
very own. We will also prin
later issue so we can all

AOD NG COMMANUS
TO BASIL

By: Nev Young.

This new series of articles will attempt to show how the
experienced machine code programmer can extend the BASIC
language by adding new COMMANDs and functions. It will also
attempt to highlight some of the pitfalls that I have fallen
into whilst doing this. This article refers to GDOS 3d on the
DISCiPLE or G+DOS 1a/2a on the PLUS D. you have earlier
versions you should run the upgrade programs published in past
issues of FORMAT.

Although this is aimed at the more experienced programmer do
not be afraid of reading it. You just may learn something. You
may find it useful to have your Spectrum handbook open at
chapter 25 'The System Variables’.

As you know, I hope, when you enter a BASIC COMMAND it is
first checked for correct’ syntax and then either stored in the
programme area or executed depending on whether there was a line
number or not. The spectrum shows what state it is in by a flag
(bit 7 of FLAGS) which is zero for syntex checking and one at
run time. There are also several system variables used by the
interpreter and these are CH ADD, X-PTR, ERR NR and ERR SP.

During syntax checking CH ADD contains the memory address of
the character being interpreted. Two restart calls are used to
manipulate this RST 24 (18H) which loads the current character
into the A register and RST 32 (208) which loads the next
character into the A register. In this way the interpreter steps
along the BASIC line.

Before starting to look at a line of BASIC “the interpreter
will load an error address onto the machine stack, that is the
address of the routine to goto if an error has occurred. The
current value of the stack pointer is stored in ERR SP so that
the machine stack can be cleared to a known state on error.

If an error does occur then an RST 8 instruction is executed
followed by a byte that contains the error number. Under normal
conditions the value of CH ADD is copied to X-PTR, and the error
number is copied to ERR NR. Then the calculator stack is cleared
and the machine stack is set to the value stored in EAR SP. If a
line is being entered this will cause the flashing '?' to appear
at X-PTR. If the error is found during run time then a message
will be printed. Therefore ERR SP normally (but not always)
points to a machine stack entry containing 4223 (107F#) during
line entry and 4867 (1303H) during execution.

When syntax checking the Spectrum verifies that a sufficient
number of parameters of the correct type follow a COMMAND word
and that they are followed by the end of the statenent. However,

24

@uring execution the check for the end of the statenent only
happens AFTER the COMMAND has been executed. You can verify this
by typing PAPER 6: CLS #. You will see that the normal CLS is
executed before the DISCAPLE takes over to do a CLS #. This can

se some problems.

When you have a DISCiPLE connected, and B00Ted, something
different happens. The interpreter will still do a RST 8 when a
error is detected but the DISCiPLE hardware will detect this and
switch out the normal machine ROM and replace it with the
DISCiPLE's memory. The DISCiPLE will then copy CH ADD to X-PTR.
The machine code program in the DISCiPLZ then performs a number
of tests to find out why a RST 8 was done as it is NOT always
due to an error, there are two other cases. We will assune it is
an error, in this case the DISCIPLE will search backwards from
CH ADD until it finds a COMMAND word. (This is not the most
reliable method of finding the start of the statement). It will
then compare the COMMAND with its own internal list and if a
match is found it will syntax or execute it as required.

If no match is found then the DISCiPLE will return control to
the main spectrum ROM, at address 88 (58H), to report the error
that was originally found. Just prior to this return, however,
the DISCIPLE will test its own system variable ONERR (at address
@14) and if this is NOT zero then the address stored there will
be called. Sadly if the DISCiPLE finds the COMMAND is one of its
own and there is a syntax error, it does not allow us to use
ONERR and it just reports an error. We cannot therefore use any
of the COMMANDS that are used by the DISCIPLE for extensions.

It is by placing the address of our own routines at ONERR that
we can add to BASIC. when the call to ONERR is made the
following conditions exist:~

CH ADD points to the COMMAND word.
X-PTR points to where in the statement the original error
happened.
ERR NR contains the original error number.
The A register contains the COMMAND word.
The machine stack is conditioned, by use of the DISCiPLE
variable ERRSP, so that a return via the DISCIPLE will continue
without error.
The DISCSPLE is conditioned to report any new error immediately
via the main spectrum ROM. (DOS 3d only)
‘The main spectrum ROM is paged IN. (DOS 34)*
The Y index register points to ERR NR.
‘The Workspace has been cleared. *
The Calculator stack has been cl

* These will cause problems for us later.

From this information we can build our new COMMANDS.

There is what I consider to be a major flaw in this design,
and that is that when the spectrum is reset you will lose the
new code but ONERR will still point to it. Thus any error you
get will cause a crash unless you reload the new code or zero
out ONERR.

25

While the DISCiPLE is paged in there are a number of useful
routines that we can use to build our new routines. Many of
these are restart codes (eg RST 16).

RST 16 (10H) = CMR (Call Main Rom). This is used to call any
machine code subroutine with the disciple paged out and then
return to the instruction after the call with the disciple paged
in, It is used by following the RST 16 with a DEFW that contains
the address of the main ROM code.

RST 40 (28H) = GINC (Get The Next Char). This does the saze as a
RST 32 in the main ROM.

CALL 44 (2CH) = RS18. This does the sane as a RST 24 in the main
ROM.

RST 48 (30H) = CSFO (Check For Syntax Only). Returns with the
zero flag set if in syntax mode.

JP 70 (46H) = RTBC (Return To BC)

JP 79 (4FH) = RTHL (Return To HL) These will both page in the
main ROM and jump to the address stored in BC or HL as their
name implies.

CALL 1033 (409H) = CEOS (Check for End Of Statement). A useful
routine that tests if the character pointed to by CHADD is a
or CHR$ 13. If not it reports an error but if so, it will test
for syntax only and returns to the correct place. (ie to the
main ROM ur to the instruction after the call).
NOTE: This is at a different address, 1134, on the PLUS D.

There are many more.

Well thats most of the theory covered. As a pratical example I
have written a small routine that gives a new COMMAND - “OUT *
n,m" - which will delete lines n through m from a program. Next
month I will give you the assembly listing with notes on how the
routine works.

More Next Month
CAPTAIN, WHY IS

DR.McCOY STARING AT
A CHAMPAGNE CORK ?,

Ow
I'VE NO IDEA MR.SPOCK..

HAVE YOU NOTICED THE ONE
IN LT. UHURA'S EAR?

26

N03 GOMMOI GdOgS
By:Bob Brenchley.

When Uncle Clive produced the Interface 1 and Microdrives he
introduced the concept of ‘HOOK CODES'. These were a vay of
controlling the interface from machine code. They were fairly
simple in concept (although not always very easy to use) and
took the form:-

RST 8
DEFB n

Now some of you will already know that RST 8 is the call to the
Spectrum's error handler. If the DEF3 has a number in the range
0 to. 26 it is taken as an error code (see appendix b in the
Spectrum manual). Error code 27 to 50 where used with Interface
one to tell it which of its routines you wanted to use. what
happened was the Interface 1 ROM was paged in when the RST 8
instruction was executed, if the error number was one of its
"HOOK CODES' then it carried out the required operation before
handing back to the main ROM,

When the DISCIPLE was designed Bruce Gordon decided to use the
same methord for calling his Shadow ROM, indeed most of the
Intertace 1 Hook Codes are supported by GDOS so that machine
code software written for Microdrives can still be used on disc.
However, to exploit the full power of the disc & printer system
a new set of codes were introduced and, to differentiate between
them and Hook Codes, the name COMMAND CODES was coined.

DISCiPLE & PLUS D Command Codes lie in the range 51 to 71, or
33-47 hex for those of you who insist on working in that
outmoded number system. I assume that you will be using the
latest version of the operating system - DISCPLE 3d or PLUS D
ja/2a - if not then some codes will not work.

The command codes recognised by the DISCiPLE & PLUS D are as
follows:-

COMMAND NAME - CODE - HEX © COMMAND NAME - CODE - HEX

EXFER 51 33h WSAD 62 3Eh
OFSM 52 34h RSAD 63 3Fh
HOPLE 53° 35h REST 64 9 40h
sBYT 54 36h HERAZ 65 04th
HSVBK 55 37h cops2 66 9 42h
cFSM 56 38h PCAT 67 0 43h
PNTP 57 39h HRSAD 68 44h
cops 58 3ah HWSAD 69 = 45h
EGFLE 59 38h OTFoc 70 46h
LBY? 60 3Ch PATCH 10 47h
HLDBK 61 3Dh

27

Now lets deal with each Command Code (CC) in turn and try to
explain what each does. Dont worry about sone of the labels used
in the explanations, all will become clear as this series
develops.

BXFER_Code-51_ 3°
This command transfers the file description and header to the

Disc File Channel Area (DFCA). The IX register must point to the
first byte of the 24 byte user's file information area (UFIA).
QFSM Code-52 3

‘Opens a Pile Sector Map with the information contained in the
DFCA. A return is made with the disc buffer pointer (RPT) set to
the start of the disc buffer RAM (DRAM).

HOFLE Code-53 3%
‘Open a file. IX must point to the user's file information area

(UFIA). This Code combines the functions of HXFER and OFSM, also
setting the 9 bytes of header information from HDOO to the
beginning of the file. This header on the file allows the normal
LOAD D1 "Filename" syntax to call the file.

SBYT_C 4 36
" Save the byte in register "A" to DRAM at the location pointed
to by RPT. RPT is incremented, if the disc buffer is full the
sector is saved to disc and RPT is reset.

HSVBK_Code-55 37
‘Save a block of data to the disc. The DE register points to

the start of the data and the BC register holds the byte count.

crsM_Code-56 30
Close File Sector Map. This routine expties the DRAM and

copies the header area onto the directory. Files that are not
closed will not be in the directory and therefore dont exist.

34
PNTP __Code-57

Output the 8 bit code in register 'A' to the printer port,
after checking busy status of the printer. Note: the Break key
is scanned but if pressed you are returned to Basic.

COPS Code-58 7?
““Copy the screen RAM to the printer in high resolution screen
graphics as set up under the graphics control variables. This is
equivalent to Snapshot 1 or SAVE SCREENS(1).

HGFLE Code-59 3%
@ file from disc. IX register must point to the start of

the UFIA. The return is made with the first sector of the file
loaded into DRAM and RPT pointing to the first byte (usually the
start of the nine byte header information).

LBYT_Code-60 30
“oad the byte pointed to by RPT from DRAM, and return with it
in the "A" register, RPT is updated. If the buffer is empty,
another sector is read from the disc. Be careful - you must make
sure there is another sector to read from the file or a system
crash can result.

28

HLDBK Code-61 29
‘Load a Block of data from disc to the memory pointed to by the

register DE with the block count in register BC.

WSAD_Code-62 36
Write Sector at DE. Writes the contents of the DRAM at the

track pointed to by D and the sector pointed to by E, and sets
the pointer to the start of DRAM.

RSAD_Code-63 3
Read sector at DE. Reads the sector at track D, sector E into

the DRAM, and sets the pointer RPT to the start of DRAM.

REST_Code-64 40
Reset drive to Track 0. The drive number is taken from DFCA.

HERAZ Code-65 41
Erase the file on disc using the information contained in UFIA

= so make sure that IX points to this.

cOPS2_Code-66 42
Copy screen RAM to printer as A4 Gray Scale dump. This is the

machine code equivalent of Snapshot 2 or SAVE SCREENS(2).

PCAT Code-67 ¢*
Print Catalogue to stream. Use HXFER to move the UFIA into

DRAM,

DSTR1 = Drive No
SSTRI = Stream No (if disc file it must be on same disc)
HDOO = 2 for short (CAT!) 4 for long INSTR2= "* " for full
cat or more selective filename
Note: No CLS even with full CAT.
Note: Due to a ROW bug the DISCIPLE can’t CAT into @ disc
ile.

HRSAD Code-68 4+
Read Sector to address - full 512 bytes the same as the Basic

LOAD @ command.

A= Drive
DE = Track/Sector
IX = Address to load

HWSAD_Code-69 %S
‘As HRSAD but write sector.

Qrroc Code-70 +e
‘Open type file OPEN and CLOSE if AsO then open file using

details transferred by HXFER, If A<>0 then close stream A.
PATCH Code-71 47

Returns with shadow system paged in. On return to your program
HL is set to zero if you are on a PLUS D or to 1 if running on a
DISCIPLE.

In the next article I will explain how the UFIA works and show
you how to use a few of the Command Codes.

23

a

By: Paul King.

AIFF CP
Some time ago, while writing a large basic program, I came up

against, one short fall in the 48k editor. One of my program
lines was almost half a screen long and I needed to add an
instruction on the end. Five minutes later and the new
instruction was on the end of the line and I pressed enter...
just as I realised I had made a mistake in one of the numbers,
30 back to the long delay getting the cursor to the end of
the line again.

Now the DISCiPLE came to my rescue. Every 50th of a second the
Spectrum is interrupted in its normal processing so the keyboard
can be scanned. During this keyboard scan the DISCiPLE pages in
to do odd housekeeping functions and to look for network
activity. It also checks the location relating to POKE @16 & 17,
if these are non-zero the DOS uses the contents of these two
locations as a CALL address for a machine code routine. Its
known as a JIFFY call, because the next one cones along in just
a jifty.

The machine code routine give below adds two new fonctions to
the 48k editor. Press Cursor-Up (cap-shift 7) and the cursor is
moved to the start of the line in the edit area. Press
Cursor-Down (cap-shift 6) and 'in a blink of an eye’ your cursor
is at the end of the program line, no matter how long it is.

The code is fully relocatable. Just load the code somewhere
safe the enter the following direct conmand:-

POKE @16,address_of_code

‘Thats all there is to it, except for a word of warning. Once the
POKE @ is done, the jiffy call will continue to be made even
after a system reset and, as the code wont then be there, you
will get a crash.

0010 48K LINE EDITOR EXTENTIONS.
0020 V1.2 MARCH 1988.
0030 for DISCiPLE or PLUS D.
0040
0050 (c)1988 INDUG.
0060
0070 LASTK EQU 23560
0080 KCUR QU 23643
0090 WORKSP EQU 23649
0100 ELINE EQU 23641
0110 FLAGS EQU 23611
0120 TVPLAG BQU 23612
01300;

30

0140
0150 ORG 50000
0160;
0170 «START PUSH AF
0180 A,(FLAGS) Check if new
0190 5,A 7 key pressed an
0200 NZ, EXIT } return if not
0210 HL
0220 BC
0230 DE
0240 HL, (WORKSP)
0250 HL
0260 HL 7 HL = end of line
0270 DE, (ELINE) DE = Start of line
0280 A, (LASTK) = 7 A= New key ~
0230 10 } Test if Cursor-Down
0300 2, ATEND
0310 WW 3 Test if Cursor-up
0320 2,ATTOP ‘
0330
0340 DE
0350 BC
0360 HL
0370
0380 AP
0390 7 Return to Dos
0400
0410
0420 DE, HL 3 Swop DE/HL if rec.
0430
0440 (KCUR),HL Store new cursor poss
0450 HL, FLAGS
0460 5, (HL) 7 Set to say key used
0470 OR FINISH
0480
0490 «LEN = BQU.«-$-START.

To explain, if a new key is pressed (bit 5 of FLAGS) then HL
is made to point to the end of the line and DE to the start. Now
a test is made for both of the keys we use, if neither is
pressed then everything is restored and a return is made. If
cursor-up was pressed then DE is exchanged into HL so it points
to the start of the edit line. Cursor down leaves HL pointing to
the end of the edit area. All that now needs doing is to store
HL on the system variable that holds the cursor position and
then flag the key press as used.

For those of you without an assembler - GET ONE SOON. No
seriously, here are the pokes, remember you can change the
address of the code if you want as its completely relocatable.

10 FOR I=50000 70 50046: READ N: POKE I,N: NEXT I
20 DATA 245,58,59,92,203,111,32,26,229,197
25 DATA 213,42,97,92,43,43,237,91 89,92
30 DATA 58,8,92,254,10,40,10,254,11,40
35 DATA 5,209,193,225,241,201,235,34,91 ,92
40 DATA 33,59,92,203,174, 24,240

31

